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ABSTRACT Generalizations of matrix decompositions to multidimensional arrays, called tensor
decompositions, are simple yet powerful methods for analyzing datasets in the form of tensors. These
decompositions model a data tensor as a sum of rank-1 tensors, whose factors provide uses for a myriad of
applications. Given the massive sizes of modern datasets, an important challenge is how well computational
complexity scales with the data, balanced with how well decompositions approximate the data. Many
efficient methods exploit a small subset of the tensor’s elements, representing most of the tensor’s variation
via a basis over the subset. These methods’ efficiencies are often due to their randomized natures; however,
deterministic methods can provide better approximations, and can perform feature selection, highlighting
a meaningful subset that well-represents the entire tensor. In this paper, we introduce an efficient subset-
based form of the Tucker decomposition, by selecting coresets from the tensor modes such that the
resulting core tensor can well-approximate the full tensor. Furthermore, our method enables a novel feature
selection scheme unlike other methods for tensor data. We introduce methods for random and deterministic
coresets, minimizing error via a measure of discrepancy between the coreset and full tensor. We perform the
decompositions on simulated data, and perform on real-world fMRI data to demonstrate our method’s feature
selection ability. We demonstrate that compared with other similar decomposition methods, our methods can
typically better approximate the tensor with comparably low computational complexities.

INDEX TERMS Tensor decomposition, tucker decomposition, higher order singular value decomposition,
coresets, tensor CUR decomposition, subset selection, feature selection, fMRI.

I. INTRODUCTION
Datasets in the modern era often take the form of large multi-
dimensional arrays called tensors. A tensor can be understood
as a collection of values (e.g. measurements) that are each
associated with a corresponding list ofN array indices, where
N denotes the order of the tensor. Whereas a vector is a

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Mucchi .

first order tensor and a matrix is a second order tensor,
the analysis of third or higher order tensors is the focus of
those methods formally called tensor decompositions. Tensor
decompositions generalize matrix decompositions to higher
order tensors, approximating a tensor dataset as a tensor
product of several factor matrices that have various use cases.
These generalizations notably endow tensor decompositions
with the ability to model multilinear relationships within the
data, concisely modeling the relationships across different
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modes of the tensor. Furthermore, tensor decompositions
provide a low-rank model of the tensor that typically is
orders of magnitude smaller in memory than the original
tensor. A tensor decomposition’s factors are typically useful
for describing the latent characteristics of the tensor, and are
often used for providing a generative model of the data. All in
all, tensor decompositions provide tools for a wide range of
uses, such as dimension reduction [1], [2], [3], [4], [5], feature
extraction [6], [7], [8], [9], denoising [10], [11], [12], [13],
[14], [15], missing data completion [15], [16], [17], [18], [19],
[20], dictionary learning [21], [22], [23], [24], [25], signal
processing [26], [27], [28], [29], [30], [31], [32], and various
others. Applications of tensor decompositions are widespread
and include chemometrics [1], [33], [34], psychometrics [35],
[36], econometrics [37], [38], analysis of medical imaging
modalities [7], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], radar and communication applications [30], [49],
[50], applications to machine learning [26], [51], [51], [52],
[53], [54], [55], [56], and many others.

Perhaps one of the simplest tensor decompositions is what
is often called the canonical polyadic decomposition (CPD)
[57], [58], which approximates a tensor as the sum of R rank-
1 tensors where R is a user-defined positive integer. CPD can
be understood as a higher-order generalization of matrix low-
rank decompositions, which decompose a matrix into a sum
of rank-1 matrices that best approximates the original matrix.
However, whereas matrix rank decompositions are typically
not unique unless additional constraints are imposed, the CPD
is often unique under much milder conditions. This results in
unique factors that reveal the latent structure of the data under
fewer required assumptions [1], [59], [60], [61].
Another useful form of tensor decomposition is the Tucker

Decomposition [62], [63]. The Tucker decomposition is a
general form of tensor decomposition that represents an
N th order tensor as the tensor product of N factor matrices
with an N th order ‘‘core’’ tensor: a small tensor that can
be considered a compressed version of the original tensor.
A notable specific type of Tucker decomposition is the
higher-order singular value decomposition (HOSVD) [63],
[64], the direct generalization of the matrix singular value
decomposition (SVD) to tensors. HOSVD is analytically
represented by its factor matrices being the singular vectors
of each ‘‘unfolding’’ (matricization) of the original tensor,
in which case the core tensor can be interpreted as a
tensorial form of principal components. While the CPD and
Tucker are perhaps the most popularly used tensor decom-
positions, since their introduction a wide variety of other
decompositions have been introduced and used successfully.
These include the Tensor Train decomposition [65], [66],
hierarchical Tucker decompositions [67], [68], tensor block-
term decompositions [69], [70], coupled matrix-tensor fac-
torizations [44], [71], [72], and online tensor decompositions
[73], [74], [75], [76].

Most tensor decompositions perform their optimization
routines by breaking the problem of estimating all N

factor matrices into N simpler subproblems. This typically
involves solving for each factor matrix one at a time,
by unfolding the tensor with respect to each of the
N modes and subsequently solving for (or updating) a
corresponding mode’s factor matrix. While these routines
simplify optimization by allowing decompositions to be
solved with matrix-based methods, tensor decompositions
nevertheless rely on multiplying high-dimensional matrix
representations of the tensor data, which can become
computationally expensive with exceedinglymassive tensors.
These challenges have greatly motivated computationally
efficient methods for tensor decompositions, especially those
that retain simple models with excellent approximation and
explainability.

Many efficient tensor decompositions are direct general-
izations of matrix decompositions. With matrices, a partic-
ularly useful strategy has been to approximate a matrix via
projecting onto the span of only a small subset of columns.
These are referred to as column subset selection (CSS) meth-
ods, of which include the matrix CUR decomposition [77],
[78] which approximates a given matrix by both a subset of
columns C and a subset of rows R. Subset selection methods
are distinguished by those that select a subset randomly,
with a focus on faster decompositions, or those that select a
subset deterministically, with a focus on better approximation
and for performing feature selection: identifying particularly
representative elements of the data that well-describe the
rest of the data. Extensions of these matrix decompositions
to tensors exist as types of Tucker decompositions that are
called tensor CUR decompositions [79], [80], [81], [82], [83],
[84], which use subsets of elements from multiple modes of
a tensor to provide a multilinear basis for the entire tensor.
Due to their simple procedures, tensor CUR decompositions
are among the fastest tensor decompositions, and can also
provide good approximations of tensors with reasonably
large subset sizes, yet may suffer with smaller subset sizes.
These methods exclusively select subsets randomly, rather
than deterministically. Extensions of deterministic subset-
based methods may also be desirable for tensors, especially
in the interest of determining well-representative subsets of
the data.

Tensorial feature selection has been accomplished in [85],
[86], and [87] but only in the context of supervised
learning for classification, where tensors are accompanied
by labels and feature selection is a function of the labels.
An unsupervised feature selection method for third order
tensors was proposed in [88], which takes subsets from a
single mode of the tensor. However, features in these subsets
differ depending on what elements they correspond to in
another ‘‘view’’ mode, and thus may be harder to interpret.
Furthermore, these subsets are acquired after performing a
CPD, whereas the methods we consider in this paper actually
use the subsets to perform efficient tensor decompositions.
To our knowledge there have been no other extensions of
deterministic subset-based methods to tensor data in the
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general unsupervised setting, and none for multiple modes
of the tensor.

In this paper, we introduce an efficient weighted subset-
based type of Tucker decomposition, similar in form to the
tensor CUR decompositions and the sequentially truncated
higher-order singular value decomposition (ST-HOSVD)
[89]. Notably, the deterministic variation of our method
provides a novel unsupervised feature selection algorithm for
tensor data, selecting subsets from one or moremodes that are
reasonably best able to summarize the structure of the tensor.
Sequentially across a tensor’s N modes, we select from each
mode a coreset, i.e. a weighted subset of elements [90],
[91], [92], [93], [94], that reasonably minimizes a measure of
discrepancy between the coreset and the entire mode, which
in turn minimizes the mean squared error cost between the
tensor and its approximation. We connect the discrepancy to
the cost function of HOSVD, showing that use of weighed
subsets provides a better minimization to the cost than
unweighted subsets used in tensor CUR decompositions.
We consider two methods: one based on random coreset
selection, sampling according to a weighted probability
distribution, and one based on deterministic coreset selection,
utilizing an efficient weighted kernel herding (WKH) [95]
procedure. For a given coreset, we select the corresponding
coreset weights via an efficient nonnegative least squares
(NNLS) minimizing the discrepancy between the coreset and
the entire mode. We analyze performance of our two methods
on large datasets, testing with both simulated data and real
functional magnetic resonance imaging (fMRI) data via
functional connectivity matrices (FNCs) arranged as a large
tensor. Comparing with similar Tucker-type methods, such as
variations of the Tensor CUR decomposition and randomized
HOSVD methods, we demonstrate that our methods are
highly efficient, provide good approximation performance,
and can be converted to a HOSVD decomposition with strong
estimation quality.

The paper is organized as follows. Section II intro-
duces preliminary concepts regarding matrices and tensors,
including several basic methods for matrix and tensor
decompositions. Section III explains efficient generalizations
of subset-based methods for matrix decompositions to tensor
decompositions, such as the tensor CUR decompositions.
Section IV introduces our proposed sequential coreset-based
tensor decomposition methods, which we refer to as tensor
coreset decompositions (TCD). Section V provides results
of our methods, compared with various other methods,
on both simulated tensor datasets and a real fMRI FNC tensor
dataset. Section VI concludes the paper and overviews the
contributions.

II. PRELIMINARIES
A. NOTATION
Throughout the paper, we use notation that is summarized in
Table 1, and is consistent with notation of other works that
discuss tensor decompositions (e.g., [1]).

We denote scalars by lowercase unbolded letters (e.g.,
x), vectors by lowercase bolded letters (e.g., x), matrices
by uppercase bolded letters (e.g. X), and higher order
tensors (order three or higher) by calligraphic bolded letters
(e.g. X ).
The order of a tensor, N , also referred to as the number

of modes, can be loosely thought of as the number of
dimensions in the tensor, but more precisely it is the number
of indices needed to index an entry in the tensor. For instance,
a third order tensor X has a corresponding (i1, i2, i3) element
denoted by (X )(i1i2i3). Each index corresponds to a different
mode of the tensor, and is bounded by the dimensionality
of that mode. For example, given a third-order tensor X
∈ RD1×D2×D3 , the dimensionality of the first mode is D1.
In general, when dealing with N th-order tensors, we refer to
the dimensionality of the nth node by Dn, and a particular
index from that mode by in, for in = 1, . . . ,Dn, and n =

1, . . . ,N .
As our paper utilizes subsets of the tensor, we define a

subtensor as a subset of elements in the tensor corresponding
to some set of indices. We define index sets over a given
nth mode of a tensor by unbolded calligraphic letters In, and
use a colon to otherwise indicate all elements of a mode. For
example, (X )(i,:,:) denotes the ith element of the first mode,
and (X )(I1,:,:) denotes a subset of elements in the first mode
corresponding to the index set I1.
An important operation in tensor decompositions is the

matricization of a tensor, also called the unfolding.We denote
the nth mode unfolding of a tensorX ∈ RD1×D2×...×DN by the
matrix X(n) ∈ RDn×D̃n , where D̃n =

∏N
m=1
m̸=n

Dm is the product

of all other mode’s dimensionalities. The ith row of the nth
mode unfolding is the vectorization of the ith element in the
nth mode, e.g. (X(1))(3,:) denotes the third row in the first
mode unfolding of X and is equal to vec(X(3,:,:,...,:))⊤, the
third element of the first mode.

The rank of a tensor X is defined as the smallest
number of rank-1 tensors that exactly sum to X . Unlike
with matrices, determining the tensor rank is difficult for
most real-world tensors. A more well-defined notion of a
tensor’s rank structure are the n-ranks, the ranks of each
unfolding X(n).
If the nth mode unfolding of a tensor X(n) ∈ RDn×D̃n is

left multiplied by a matrix U ∈ RJn×Dn , the resulting product
G = U X(n) ∈ RJn×D̃n is equivalently represented in the
tensor domain by the nth mode tensor product G = X ×n
U ∈ RD1×...×Dn−1×Jn×Dn+1×...×DN .

The norm of a tensor X ∈ RD1×...×DN is defined by:

∥X ∥F =

( D1∑
i1=1

. . .

DN∑
iN=1

(X )2(i1,...,iN )

) 1
2

In the next subsections, we first discuss Tucker and
HOSVD decompositions for tensors, and note their complex-
ities.We then discuss column subset selection (CSS) methods
for reducing complexities of matrix decompositions, and then
discuss generalizations of these methods to tensors.
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TABLE 1. Notation used in this paper.

Algorithm 1 HOSVD

Input: X ∈ RD1×...×DN (N -mode tensor),
[R̂1, . . . , R̂N ] (number of factors per mode)

Output: X ≈ G ×1 A1 × . . . ×M AN , where
G ∈ RR̂1×...×R̂N (core tensor),
{A1, . . . ,AN } (factor matrices)

for each mode n = 1 : N
unfold (matricize) tensor w.r.t. nth mode

llllllllll X → X(n) ∈ RDn×D̃n , with D̃n =
∏N

m=1
m̸=n

Dm

compute An ∈ RDn×R̂n ,
llllllllll the R̂n left singular vectors of X(n)
end for
G = X ×1 A⊤

1 ×2 . . . ×N A⊤
N

B. TUCKER AND HOSVD DECOMPOSITIONS
The Tucker decomposition [62], [63] is a general type of
tensor decomposition that approximates an N th order tensor
X ∈ RD1×...×DN by the tensor product of N factor matrices
An (n = 1, . . .N ), with a smaller core tensor G. The general
cost function for Tucker decompositions takes the form:

J (G,A1, . . . ,AN ) = ∥ X − G ×1 A1 ×2 . . . ×N AN ∥
2
F

(1)

where An ∈ RDn×R̂n is the nth mode’s factor matrix, G ∈

RR̂1×...×R̂N is the core tensor, and R̂n are the number of factors
chosen for the nth mode, which are often closely related to the
tensor’s n-ranks Rn, for n = 1, . . . ,N .
The Tucker decomposition is not unique without any

further constraints. There are a variety of ways to achieve
a unique Tucker decomposition over a tensor, including

Algorithm 2 ST-HOSVD

Input: X ∈ RD1×...×DN (N -mode tensor),
[R̂1, . . . , R̂N ] (number of factors per mode)

Output: X ≈ G ×1 A1 × . . . ×M AN , where
G ∈ RR̂1×...×R̂N (core tensor),
{A1, . . . ,AN } (factor matrices)

for each mode n = 1 : N
unfold (matricize) tensor w.r.t. nth mode

llllllllll X → X(n) ∈ RDn×(D̃n)(n) ,
llllllllll with (D̃n)(n) = (

∏n−1
m=1 R̂m) (

∏N
m=n+1Dm)

compute An ∈ RDn×R̂n ,
llllllllll the R̂n left singular vectors of X(n)

truncate the unfolded tensor
llllllllll X(n) → A⊤

n X(n) ∈ RR̂n×(D̃n)(n)

un-matricize the tensor
llllllllll X(n) → X ∈ RR̂1×...×R̂n×Dn+1×...×Dn

end for
G → X

several subset-based approaches such as the tensor CUR
decomposition and the method that we later propose in this
paper.

A useful Tucker decomposition is the HOSVD [63], [64],
a natural generalization of SVD to tensors. HOSVD’s factor
matrices of a tensor X are analytically given as the left
singular vectors of each unfolding of X , and the core tensor
is obtained from a tensor product of these factor matrices with
X . The HOSVD procedure is described in Algorithm 1.

Several variations of HOSVD have been introduced since
its inception to improve its efficiency, with one of the most
used variations being the sequentially truncated HOSVD
(ST-HOSVD) [89]. Across each nth mode of the tensor, ST-
HOSVD first estimates a mode’s factor matrix from the left
singular vectors of the nth mode unfolding X(n) (just as done
with HOSVD), and then replaces X with the core tensor
formed by the tensor product of this factor matrix with X .
Over calculation of the N mode factor matrices, the current
tensor progressively reduces in size until it becomes the final
core tensor and all N factor matrices are obtained. The ST-
HOSVD procedure is described in Algorithm 2.

If we denote the SVD of each X(n) in the for loop of
Algorithm 2 byX(n) =UX(n) ΣX(n) V

⊤

X(n)
, such thatAn =UX(n) ,

it follows that ST-HOSVD’s truncation strategy sequentially
replaces X(n) with its top R̂n right principal components
(PCs) ΣX(n) V⊤

X(n)
, thus best preserving the approximation

of the original tensor while reducing the dimensionality of
operations across all remaining modes.

We now compare the computational complexities of
HOSVD and ST-HOSVD. For simplicity, we assume
that the order of modes truncated with ST-HOSVD is
n = 1, . . . ,N . HOSVD’s computational complexity is
O

(∑N
n−1min

(
D2
nD̃n, D̃

2
nDn

))
, dominated by the N SVD-

unfoldings for large tensors. ST-HOSVD considerably
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reduces this complexity to O
( ∑N

n−1min
(
D2
nD̃

(n)
n ,

(D̃(n)
n )2Dn

))
, where D̃(n)

n = (
∏n−1

m=1 R̂m) (
∏N

m=n+1Dm), here

R̂m is the number of factors in the mth mode. However
with ST-HOSVD, the first few modes’ SVDs are similar in
complexity to those calculated with HOSVD. This leads ST-
HOSVD to still be computationally expensive when dealing
with large tensors, motivating more scalable decomposition
methods.

In the next section, we overview subset-based methods for
reducing complexity of matrix decompositions, from which
we then overview their various generalizations to tensors.

C. MATRIX DECOMPOSITIONS BY COLUMN SUBSET
SELECTION (CSS)
This subsection gives a general overview of column subset
selection methods for matrices. For a more detailed discus-
sion of the topic, we refer the reader to [96], [97], [98].
CSS methods approximate a matrix X ∈ RM×N by

selecting a subset of columns of the matrix, selecting either
randomly or deterministically, and then approximating X
by projecting onto the span of the subset. If we denote
XIs ≜ (X)(:,Is) ∈ RM×Ns as the matrix formed by a Ns
subset of columns, corresponding to some index set Is, the
approximation error for some choice of XIs is given by:

J (Is) =

∥∥∥ X − XIs (X
⊤

IsXIs )
−1X⊤

Is X
∥∥∥2
F

=

∥∥∥ X − XIsXIs
† X

∥∥∥2
F

=
∥∥ X − PXIs X

∥∥2
F (2)

where XIs
†

= (X⊤

IsXIs )
−1X⊤

Is is the pseudoinverse of XIs
(such that XIs

† XIs = I ∈ RNs×Ns , and PXIs = XIsXIs
†

∈

RM×M is the projection matrix corresponding to the column
space of XIs . This is equivalently given by:

J (Is) =
∥∥ X − XIs MIs

∥∥2
F (3)

where MIs = (X⊤

IsXIs )
−1X⊤

Is X ∈ RNs×N is a matrix
mapping columns of X onto the span of XIs , which in later
sections we refer to as a ‘‘mapping’’ matrix.

1) RANDOMIZED CSS
Randomized CSS methods operate by assigning a weighted
probability distribution to the columns and then sampling
according to this distribution. Uniform sampling of the
columns (giving equal sampling probability to each column)
generally produces bad approximations of a matrix, espe-
cially if the columns are heterogeneous. Instead, sampling
distributions are often based on probabilities weighted by
the squared norm of columns, i.e. ‘‘norm sampling’’ [77],
[99], or approximated statistical leverage scores [100]. In our
paper, we focus on norm sampling, which is the most
computationally efficient of the sampling-based methods,
andwe note that norm sampling is also conventional in tensor-
based methods [79], [82], [101]. It has been proven in [99]
that norm sampling provides the following error guarantees:
given a matrix X ∈ RM×N and values for ϵ, δ, and a

defined upper limit to the rank k of PXIs = XIsXIs
†, then a

norm sampled selection for XIs satisfies the following error
probability:

Pr
{ ∥∥X − PXIs X

∥∥2
F ≤ ∥X − Xk∥

2
F + ϵ ∥X∥

2
F

}
≥ 1 − δ

whereXk is the best rank-k approximation toX, and 0 ≤ δ ≤

1 is the probability of failure.
Furthermore, it has been proven in [77] that given a norm

sampled subset of columns XIs , after rescaling the columns
of XIs to be the same norm:

(XIs )(:,i) →
1

√
Ns

∥ X ∥F∥∥ (XIs )(:,i)
∥∥
F

(XIs )(:,i) (4)

that the following error probability is satisfied ∀ ϵ ≥ 0:

Pr
{ ∥∥∥XX⊤

− XIsX
⊤

Is

∥∥∥2
F

≤
η

(Ns)
1
2

∥ X ∥
2
F

}
≥ 1 − δ

where η = 1 + (8log(δ−1))
1
2 .

If we denote the SVD of X by X = UX ΣX V⊤

X , this
particular result suggests that with a high enough sample size
Ns, a norm sampled XIs can adequately approximate the left
PCs UX ΣX of X with a high probability, by re-scaling the
columns according to (4). We later will refer to this result
when introducing our coreset-based method.

2) DETERMINISTIC CSS
Deterministic CSS methods are combinatorial methods for
selecting a ‘‘best’’ representative subset of columns, where
‘‘best’’ is relative to the method used. The problem of finding
a subset that exactly minimizes the approximation cost over
all possible subsets has been acknowledged as being UG-
hard (where ‘‘UG’’ refers to the unique games conjecture)
[102], in which case deterministic algorithms mainly focus
on obtaining a reasonably ‘‘best’’ subset in a reasonable
amount of time. These methods can also effectively serve as
feature selection methods, and thus there is a large overlap
between methods that can be used for feature selection and
those used for deterministic CSS. However, the design of CSS
methods typically puts a greater emphasis on the scalability of
methods, especially with the high-dimensional combinatorial
problems posed by large matrices or tensors.

Perhaps the most popular method for deterministic CSS is
to use the greedy algorithm, which consecutively searches for
a new column to add onto a subset such that the resulting
new subset best approximates the full matrix. The greedy
CSS algorithm was first studied in [103], and has been
demonstrated to be both scalable to large numbers of columns
and provide high-quality representative subsets [97], [104],
[105], [106], [107], [108].
As one may expect, deterministic CSS methods provide

better approximation than randomized methods and incur
better error guarantees. The tightest bounds for deterministic
CSS depend on the singular values of X; intuitively, those
matrices whose singular values have higher rate of decay
are simpler matrices which require much fewer columns to
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well-approximate the matrix. In [98], the following bound
was proven on greedy CSS:∥∥ X − PXIs X

∥∥2
F ≥ (1 − ϵ) ∥ X − Xk ∥

2
F

where Xk is the best rank-k approximation to X, r ≥

16k (ϵ σmin(Xk ))−1 is the number of steps taken by the
greedy algorithm, and σmin(Xk ) is the smallest singular
value of Xk . Similar results have been proven in Theorem 3
of [109]. A shared result amongst these works is that by
only taking slightly more than k columns with greedy CS,
the approximated matrix is less than a 1 − ϵ factor from the
optimal choice of k columns.

III. SUBSET METHODS GENERALIZED TO TENSORS
(METHODS TO APPROXIMATE THE HOSVD)
As tensor decompositions frequently invoke matrix oper-
ations with the tensor unfolding, matrix approximation
techniques have found great use for accelerating tensor
decompositions [79], [80], [81], [82], [83], [101]. As our
proposed method is most analogous to the HOSVD, we focus
only on those subset-based methods for performing a Tucker
decomposition in the form of an approximated HOSVD.

These methods generally estimate a form of Tucker
decomposition that is not a HOSVD decomposition, but
can be used to approximate one. In order to provide
an approximate HOSVD decomposition, we may convert
any method’s corresponding Tucker decomposition to a
HOSVD decomposition via the procedure [82] outlined in
Algorithm 3.

Algorithm 3 Convert Tucker decomposition to HOSVD

Input: G̃ ∈ RR̂1×...×R̂N (core tensor)
{Ã1, . . . , ÃN } (factor matrices)

Output: G ∈ RR̂1×...×R̂N (HOSVD core tensor),
{A1, . . . ,AN } (HOSVD factor matrices)

for each mode n = 1 : N
factorize Ãn using the QR decomposition:

llllllllll
[
Qn,Rn

]
= qr(Ãn)

replace G̃ → G̃ ×n Rn
end for
perform HOSVD on the new core tensor:
llllllllll

[
G,A1, . . . ,AN

]
= HOSVD(G̃)

for each mode n = 1 : N
replace = An → Qn An

end for

There are various different strategies to provide a Tucker
decomposition over a tensor X via exploiting the previously
discussed matrix approximation techniques over the tensor
unfoldings X(n). These strategies can generally be separated
into two distinct camps with differing decompositions:

• column-based subsets: approximate X(n) by a subset of
its columns, e.g. randomized sampling tucker CUR [80]

• row-based subsets: approximate X(n) by a subset of its
rows, e.g. Chidori CUR [79], [82], Fiber CUR [81], [82],
and randomized-block HOSVD (RB-HOSVD) [101]

We briefly overview and contrast these two strategies in the
following subsections.

A. COLUMN-BASED SUBSET METHODS FOR TENSOR
UNFOLDINGS
Column-based subset methods approximate a tensor unfold-
ing X(n) using a subset of its columns. These columns are
referred to as ‘‘fibers’’ in the tensor literature, and represent a
fixed index in all modes of the tensor except for the nth mode.
As an example, (X(1))(:,z) is a fiber of the first mode which
represents (X )(:,i2,i3,...,iN ) for some indices of the N −1 other
modes i2, i3, . . . , iN that correspond to some fiber index z.

For the nth mode unfoldingX(n) of a tensorX , if we denote
In as an index set for some subset of R̂n columns, and denote
(X(n))In ≜ (X(n))(:,In) ∈ RDn×R̂n as the matrix formed by
these R̂n columns, then (2) is restated as:

J (In) =
∥∥ X(n) − P(X(n))In X(n)

∥∥2
F (5)

=
∥∥ X(n) − (X(n))In MIn

∥∥2
F (6)

where P(X(n))In = (X(n))In (X(n))In
†

∈ RDn×Dn is the
projection matrix corresponding to the column space of
(X(n))In , (X(n))In

†
∈ RR̂n×Dn is the pseudoinverse of (X(n))In ,

and MIn = (X(n))In
† X(n) ∈ RR̂n×D̃n is the matrix mapping

columns of X(n) onto (X(n))In .
By denoting I =

{
I1, . . . , IN

}
as the set of all N mode’s

column index sets In, for n = 1, . . . ,N , then we can
represent the resulting decomposition’s cost in a manner
similar to (1):
J (I) =

∥∥ X − M ×1 (X(1))I1 ×2 . . . ×N (X(N ))IN
∥∥2
F

(7)
where the core tensor is given by M = X ×1 (X(1))I1

†
×2

. . . ×N (X(N ))IN
†

∈ RR̂1×...×R̂N , and the factor matrices are
given by the column subsets (X(n))In .
This decomposition in (7) was first introduced in [80],

referred to as ‘‘ApproxTensorSVD’’ in that paper. Later
publications such as [83] refer to the algorithm as randomized
sampling tucker CUR (RST-CUR). This decomposition is
perhaps the most direct generalization of the matrix CUR
to the tensor domain, as the decomposition takes the exact
form of the matrix CUR when N = 2. We refer to this
decomposition as RST-CUR for the remainder of the paper.

The same advantages gained by matrix CUR for matrices
carries over to RST-CUR for tensors, notably a low com-
plexity way to approximate a tensor’s HOSVD. Additionally,
as the factor matrices (X(n))In are fibers of the full tensor
X , the factor matrices retain properties held by the original
tensor, which can include sparsity, nonnegativity, etc.. These
qualities in X being retained in factor matrices (X(n))In may
aid with the interpretability of the decomposition.

A key difference between column-based subset methods
and row-based subset methods over X(n) is how differences
in dimensions affect the subset selection process. As X(n)

∈ RDn×D̃n is in general a very wide matrix with D̃n ≫

Dn, the massive number of columns leads deterministic
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column subset selection methods to be intractable, as their
complexities are typically in the order of O(D̃2

n) or more.
Furthermore, even randomized methods typically only use
a uniform distribution for sampling the columns, e.g. with
norm sampling it may also be intractable to calculate the norm
of all D̃n columns of X(n). This is a significant comparative
disadvantage of the column-based methods such as RST-
CUR, as uniform sampling of the columns may lead to
significantly worse approximations for a given choice of R̂n.
While column subset methods overX(n) are expensive, on the
other hand, row-based subset methods are typically tractable
due to the much smaller number of rows Dn, as we discuss in
the next subsection.

B. ROW-BASED SUBSET METHODS FOR TENSOR
UNFOLDINGS
Row-based subset methods approximate a tensor unfolding
X(n) using a subset of its rows. Aside from more advanced
sampling methods being tractable over the rows than the
columns of X(n), another advantage of row-based methods is
the interpretability of their subsets. Because rows in X(n) are
simply the elements of the nth mode, rows of X(n) are easier
to interpret than the fiber columns of X(n).
For the nth mode unfolding X(n) of a tensor X , if we now

denote In as an index set for some subset of R̂n rows, and
denote (X(n))In ≜ (X(n))(In,:) ∈ RR̂n×D̃n as the matrix formed
by these R̂n rows, then (2) is restated as:

J (In) =
∥∥ X(n) − X(n) P(X(n))In

∥∥2
F (8)

=
∥∥ X(n) − MIn (X(n))In

∥∥2
F (9)

whereP(X(n))In ∈ RTn×D̃n is the projectionmatrix correspond-

ing for the row space of (X(n))In , and MIn ∈ RDn×R̂n is the
nth mode’s mapping matrix, which maps rows of X onto the
span of (X(n))In , and is given by:

MIn = X(n)(X(n))⊤In ((X(n))In (X(n))⊤In )
−1 (10)

By denoting I =
{
I1, . . . , IN

}
as the set of all N modes’

row index sets In, for n = 1, . . . ,N , then we can represent
the resulting decomposition’s cost in a form similar to (1):
J (I) =

∥∥ X − XI ×1 MI1 ×2 . . . ×N MIN
∥∥2
F (11)

where the core tensor XI = (X )(I1,...,IN ) ∈ RR̂1×...×R̂N is a
subtensor of X over the index sets In, and the factor matrices
are the N mapping matricesMIn , for n = 1, . . . ,N .
The characteristic difference between the decomposition

XI ×1 MI1 ×2 . . . ×N MIN in (11), and the decomposition
M ×1 (X(1))I1 ×2 . . . ×N (X(N ))IN in (7), is how elements
of the tensor X manifest as elements in the decomposition,
relative to a tensor generalization of (3). In (7), elements ofX
manifest as fibers in the factor matrices (X(n))In , and the core
tensor M can be considered a tensor generalization of the
mapping matrix. Where in (11), the opposite occurs: elements
of X manifest as the core tensorXI , and the factor matrices
MIn are the N modes’ mapping matrices. Thus with (11), the
core tensor is the element of the decomposition that retains
properties of the original tensor, which may yield more useful
decompositions depending on the application.

Various tensor decompositions take the form of the
decomposition XI ×1 MI1 ×2 . . . ×N MIN in (11). This
decomposition was first introduced in [79] shortly before the
introduction of the RST-CUR decomposition. Later works
such as [82] have provided significant understandings to the
error guarantees of this decomposition, and have referred to
it by the name ‘‘Chidori CUR’’ decomposition.

A key feature of the Chidori CUR is that the subset
indices In are chosen prior to the decomposition, and that
the mapping matrices MIn are calculated only over those
fibers of X(n) that correspond to the subset indices In of
all N − 1 other modes. In other words, in calculation
of MIn in (10), the matrix X(n) is the unfolding of the
nth mode ‘‘Chodiri Beam’’ (X )(I1,...,In−1,:,In+1,...,IN ) ∈

RR̂1×...×R̂n−1×D1×R̂n+1×...×R̂n , and (X(n))In is the unfolding of
the core tensor XI (a subtensor of the nth Chidori Beam).
Because theMIn are calculated over only the Chidori Beams,
the decomposition only requires access to the Chidori beams
and is thus independent from all other elements in the tensor.
This reliance on only a small subset of the tensor to perform
the decomposition results in one of the most computationally
efficient tensor decompositions. At the same time, however,
independence of the decomposition from elements outside
the Chidori beams may result in a worse factorization than
other decompositions, particularly when the subsets of the
core tensor XI are not well-representative of the rest of X ,
or if X is otherwise heavily heterogeneous in nature.
A similar decomposition was later introduced in [81], and

can be considered a generalization of the Chidori CURwhere
the unfolding fibers in X(n) and (X(n))In are not restricted to
those In of the N − 1 other modes, but can be any random
corresponding subset of fibers from X(n) and (X(n))In over
the entire tensor. This decomposition was also later studied
in [82] and has been called the ‘‘Fiber CUR’’ decomposition.
As the Fiber CUR allows access to any random subset of
fibers of X(n) and (X(n))In for calculating mapping matrices
MIn , its decomposition may be more robust to poorly chosen
subsets of the data. However, as column fibers in Fiber
CUR are typically uniformly sampled, this may also lead
the Fiber CUR to exhibit considerably higher variation in
the quality of the estimated MIn , which often leads to worse
decompositions than those provided by Chidori CUR.

As described in Section III-A, the massive numbers of
columns in X(n) make column selection methods intractable,
and thus typically only rely on uniform sampling to select the
columns. However for row-based methods such as Chidori
CUR and Fiber CUR, the much smaller number of rows
Dn ≪ D̃n allow for more sophisticated sampling methods
such as norm sampling. When norm sampling is applied,
index sets In are selected according to the norms of elements
in the original tensor, e.g. (X(n))(i,:) which when vectorized is
of dimension D̃n. These sampling schemes require N passes
over the tensor to construct the N index sets, and thus can
still be of considerable expense. Perhaps as a result of this,
row-based subset methods for tensors have exclusively used
random subset methods such as uniform and norm sampling
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to obtain subsets of the tensor, and thus deterministic subset
methods have not been explored.

Building on the ideas presented in previous sections, in the
next section we introduce a new way of performing a subset-
based Tucker decomposition that provides a good balance
between efficiency and approximation quality, by exploiting
weighted subsets of the data called coresets.

IV. TENSOR CORESET DECOMPOSITION
In this section, we introduce a method for the Tucker
decomposition that operates by selecting coresets: weighted
subsets of the data. As we later explain, these weighted
subsets can provide a better approximation to the tensor X
by effectively better approximating the HOSVD’s principal
component tensorG. We later motivate additional differences
vs. the previously discussed methods, such as a sequentially
truncated coresets approach analogous to ST-HOSVD, and
the ability to represent symmetry in the tensor over multiple
modes. Furthermore, instead of exclusively selecting subsets
randomly for greater efficiency, we also motivate ability
to select subsets deterministically, for better approximation
quality and for feature selection.

A. SUBSET DISCREPANCY–A MEASURE OF
‘‘REPRESENTATIVENESS’’
To motivate weighted subsets within a tensor, we first refer
back to the per-mode approximation error provided for row-
based subsets in (9).

J (In) =
∥∥ X(n) − MIn (X(n))In

∥∥2
F

Denoting the SVD of X(n) by X(n) = UX(n) ΣX(n) V
⊤

X(n)
,

the approximation error of MIn (X(n))In ∈ RDn×D̃n depends
on how well the subset (X(n))In can approximate the row-
space of X(n), specifically in terms of approximating its
right principal components ΣX(n) V

⊤

X(n)
, which in the tensor

domain is represented by the HOSVD core tensor G.
These PCs are analytically given by the eigenvectors VX(n)

and corresponding eigenvalues ΣX(n) of the quadratic form

X⊤

(n)X(n) ∈ RTn×D̃n , and thus can be approximated from
(X(n))In via the corresponding form (X(n))⊤In (X(n))In ∈

RTn×D̃n . As a result, an implicit distance between the PCs
of X(n) and (X(n))In is given by the distance between the
quadratic forms:

R (In) =

∥∥∥ (X(n))⊤Is (X(n))Is − X⊤

(n)X(n)

∥∥∥2
F

(12)

This can be understood as a nonparametric measure of
discrepancy [90], [91], [92], [93], [94], [95] between the full
set X(n) and the subset (X(n))In , analogous to the maximum
mean discrepancy [92], [93], [94] for a particular realization
of distributional ‘‘embeddings’’ of the elements in the set.
Specifically for some ith element in the nth node, given by
(X(n))(i,:), its corresponding embedding in this discrepancy
is given by (X(n))⊤(i,:)(X(n))(i,:) ∈ RD̃n×D̃n , and the nth
mode’s ‘‘full mode embedding’’ X⊤

(n)X(n) is given by the sum

X⊤

(n)X(n) =
∑Dn

i=1(X(n))⊤(i,:)(X(n))(i,:), which we seek to best
approximate via the subset’s embedding (X(n))⊤In (X(n))In .

B. CORESETS–WEIGHTED SUBSETS
A subset’s discrepancy can be further decreased by weight-
ing the subset: assigning individual weights w[i]

n to each
ith element in the subset. Utilizing these weighted sub-
sets, called coresets, the discrepancy measure is given
by:

R (In,wn) =

∥∥∥∥∥∥
∑
i∈In

w[i]
n (X(n))⊤(i,:)(X(n))(i,:) − Bn

∥∥∥∥∥∥
2

F

(13)

where wn =

[
w[1]
n , . . . ,w[R̂n]

n

]
∈ RR̂n is the set of R̂n coreset

weights corresponding to each element in (X(n))In ∈ RR̂n×D̃n ,
and Bn ≜ X⊤

(n)X(n) ∈ RD̃n×D̃n is the nth modes full mode
embedding (a fixed quantity).

An important point to acknowledge here is that in (13),
the weights w[i]

n are applied to the element embeddings
(X(n))⊤(i,:)(X(n))(i,:), and not the elements themselves (X(n))(i,:).
Instead, it follows that the elements receive the square root of
the weights (w[i]

n )
1
2 :

w[i]
n

(
(X(n))⊤(i,:)(X(n))(i,:)

)
=

(
(w[i]

n )
1
2 (X(n))(i,:)

)⊤(
(w[i]

n )
1
2 (X(n))(i,:)

)
This necessitates us to later specify nonnegative weights

w[i]
n ≥ 0 in order for (w[i]

n )
1
2 to be real.

We now discuss the procedure for selecting weightswn that
minimize the discrepancy (13). For simplicity, for now we
assume that we have a particular realization of the subset In,
which is selected either randomly or deterministically (as we
explain in the next subsection).With In fixed and discrepancy
as only a function of the weights wn, we can equivalently
write (13) in a form where all D̃n × D̃n matrices are instead
given as D̃2

n × 1 vectors:

R (wn) =

∥∥∥∥∥∥
∑
i∈In

w[i]
n a[i]n − bn

∥∥∥∥∥∥
2

2

(14)

= ∥ Anwn − bn ∥
2
2

where we define a[i]n = vec((X(n))⊤(i,:)(X(n))(i,:)) ∈ RT 2
as

the vectorization of the ith element’s embedding, An =[
a[1]n , . . . , a[R̂n]n

]
∈ RD̃2

n×R̂n as the horizontal concatenation

of the a[i]n , and bn = vec(Bn) ∈ RD̃2
n as the vectorization of

the full mode embedding.
This is a least squares problem arg min

wn ∥Anwn − bn ∥
2
2 for

which the ordinary least squares (OLS) solution is wn =

(A⊤
n An)−1A⊤

n bn. However as noted previously, we also
require that the weights w[i]

n be nonnegative in order for the
square root of weights (applied to the elements themselves)
to be real. Therefore, we use a NNLS algorithm [110] to solve
for wn. This is an efficient algorithm that does not explicitly
form the D̃n × D̃n embeddings, instead only requiring the
kernels between embeddings which are significantly easier
to calculate. We define the kernel between the embeddings of
(X(n))(i,:) and (X(n))(j,:) as:

k(in, jn) = < a[i]n , a[j]n > =

(
(X(n))(i,:)(X(n))⊤(j,:)

)2
(15)
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The two quantities required by the algorithm are kernels
(A⊤

n An) ∈ RR̂n×R̂n and A⊤
n bn ∈ RR̂n . The matrix (A⊤

n An)
provides all pairwise kernels within the In subset, and is equal
to

(
(X(n))(In,:)(X(n))⊤(In,:)

)◦2
∈ RR̂n×R̂n , where (.)◦2 denotes

the Hadamard power (here, elementwise squaring). The
vectorA⊤

n bn provides kernels with each element in the subset
with the full mode embedding, equal to

(
(X(n))(In,:)X

⊤

(n)

)◦21

∈ RR̂n , where 1 ∈ RDn is the vector of 1s. For further
efficiency, we initialize the NNLS algorithm with the
mapping of the OLS solution (A⊤

n An)−1A⊤
n bn to its nearest

nonnegative vector. In our experience, we often observe that
the OLS solution is already nonnegative and thus exactly
minimizes (14) without requiring the NNLS algorithm.

Having provided the means to optimize the weights wn,
in the next section we discuss ways of selecting the subsets.

C. SUBSET SELECTION–RANDOMIZED OR
DETERMINISTIC
As our method is a row-based subset method over X(n),
we can consider more advanced means of selecting subsets
(X(n))(In,:) than uniform sampling of rows. We use different
strategies if we seek random subsets, prioritizing computa-
tional efficiency over approximation quality, or deterministic
subsets, prioritizing approximation quality in addition to the
utility of feature selection.

For random subsets, we use norm sampling as done with
previously mentioned methods. While we unfortunately do
not provide an approximation bound for random subsets
using the NNLS weights discussed previously, intuitively
these weights should yield a discrepancy that is less than or
equal to that provided by the normalized weights discussed
in (4), as those weights are not explicitly optimizing over
the discrepancy whereas the NNLS weights are. Therefore,
we expect an error superior or equal to that of (4)’s weights.
As we show in the next section, it is inexpensive to calculate
the NNLS weights since the kernel quantities are required
anyways to calculate the nth mode’s mapping matrix MIn .
Selection of the random subset along with calculating the
weights has complexity of O((R̂n + 1)D̃nDn + R̂3n), which
is linear in Dn.
For deterministic subsets, we retain the use of greedy

methods in the interest of balancing approximation quality
with computational efficiency. As discussed in Section II-C,
greedy methods significantly outperform the error bounds of
randomizedmethods and lead to subsets that rapidly converge
to the properties of the full set. We specifically utilize the
weighted kernel herding (WKH) method [95] which allows
us to simultaneously and efficiently solve for the subset
indices In and weights wn. Like the NNLS algorithm, the
WKH algorithm is made more efficient by only requiring
kernels to operate. It uses X(n) X⊤

(n) ∈ RDn×Dn , the matrix of
pairwise kernels between all elements in the nth mode, and
has complexity O(D̃nD2

n + R̂3nDn), which is quadratic in Dn.
In the next section, we introduce our tensor decomposition

method as a sequentially truncated variation of the row-based

subsetmodel in (11), wherewe sequentially replace the tensor
with a coreset of itself.

D. TENSOR DECOMPOSITION VIA SEQUENTIALLY
TRUNCATED CORESETS
We now motivate our method for performing a coreset-based
Tensor decomposition. We first revisit points mentioned in
Section III-B. specifically discussing the advantages and
disadvantages of the Chidori CUR decomposition. As we
note previously, the Chidori CUR Decomposition is efficient
because it only requires processing small subsets of the
tensor – the ‘‘Chidori beams’’ – in order to calculate the
mode’s mapping matrices MIn . However, this may also
lead to a significantly worse approximation quality for the
decomposition, in the event that the randomly chosen subsets
are not well representative of the entire tensorX, or otherwise
for decomposing tensors that are highly heterogeneous in
nature. When approximation quality is a priority for both
randomized and deterministic methods, it may be more
prudent to use a method that does pass over all elements
of the tensor, but preferably only once if computational
efficiency is also a priority. These decompositions can
provide significantly more representative subsets of the data
while still maintaining excellent computational efficiency.

With this focus in mind, in order to provide a good balance
between approximation error and efficiency, we instead
consider a method inspired by ST-HOSVD that utilizes
sequentially truncated coresets to perform the decomposi-
tion. Like ST-HOSVD, for each nth mode of the tensor,
we would learn the mapping matrixMIn and then replace the
tensor with a truncated tensor, thus significantly decreasing
the complexity of calculating MIn for all remaining modes.
However, whereas ST-HOSVD replaces the tensor with the
PCs of the mode, we instead replace the tensor with the nth
mode’s coreset. These methods are closely connected by the
fact that the coresets are trying to best preserve the PCs of the
tensor, as evidence by the discrepancy cost in (12) and (13).

We now discuss details of our method’s implementation to
assist understanding the pseudocode provided inAlgorithm 4.
The factorization of the nth mode is initialized by selecting
a subset In, which as we mentioned in Section VI.C is in
generalO(Dn) for random subsets orO(D2

n) for deterministic
subsets. We then compute the pairwise inner products
between the subset and the full set, given by the matrix
PIn = (X(n))In X

⊤

(n) ∈ RR̂n×Dn , within which the submatrix

P(In,In) = (PIn )(:,In) ∈ RR̂n×R̂n provides the pairwise inner
products within the subset. With both of these matrices,
we can obtain the kernels of embeddings P◦2

(In,In) ∈ RR̂n×R̂n

and P◦2
In 1Dn ∈ RR̂n to perform NNLS and learn the coreset

weights wn ∈ RR̂n . Arranging wn in the diagonal matrix Wn

∈ RR̂n×R̂n , the approximation in (9) given by MIn (X(n))In
can be weighted via MIn W−1

n Wn (X(n))In , in which case
the mapping matrix (accounting for weights) is given by
MIn = P⊤

InP
−1
(In,In) W

−1
n ∈ RDn×R̂n , and the weighted coreset
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is given by Wn (X(n))In . Thus with the weights calculated,
we compute the mapping matrix MIn , then truncate the nth
mode by replacing it with the coresetWn (X(n))In , and finally
un-matricize the tensor so that the entire process can be
repeated for the remaining modes. Fig. 1 visualizes the tensor
coreset decomposition (TCD).

FIGURE 1. Visualization of the tensor coreset decomposition (TCD)
applied to a 3rd-order tensor X . The core tensor C is a weighted
subtensor (coreset) of X .

After truncating over all modes, the resulting coreset core
tensor C = XI ×1 W1 ×2 . . . ×N WN is a subtensor
XI weighted on each nth mode by weight matrix Wn, and
serves as a compressed form of X analogous to the principal
component tensor G from HOSVD. The weights Wn are a
key differentiator from other methods like the Chidori CUR
decomposition, and the use of Wn within this sequentially
method can allow for an excellent approximation to the
HOSVD core tensor G, and by extension, the tensor X .
The method described in Algorithm 4 assumes that X is

an asymmetric tensor, and does not preserve symmetry in
the decomposition if X is symmetric across several modes.
To retain symmetry in the decomposition in the event that X
is symmetric, we simply compute only one factor matrixMIn
for one of the symmetric modes n, and reuseMIn for all other
modes symmetric to n, while truncating those other modes the
same way X(n) → Wn (X(n))In .
In the next subsection, we compare our so called Tensor

Coreset Decomposition (TCD) to the Chidori CUR decom-
position from a computational complexity standpoint.

E. COMPUTATIONAL COMPLEXITY OF TCD
In this section, we discuss the complexities of TCD with
random (norm sampled) or deterministic (WKH) subsets,
compared to Chidori CUR with random (norm sampled)
subsets. We retain notations such as D̃(n)

n = (
∏n−1

m=1 R̂m)
(
∏N

m=n+1Dm) for sequentially truncated methods like ST-
HOSVD and TCD. For simplicity, we assume that the modes
truncated with these methods are in the order n = 1, . . . ,N .
We first discuss complexity of Chidori CUR decompo-

sition with random (norm sampled) subsets. The majority
of complexity is in calculation of the norms of elements
across the N modes of the original tensor X , each mode of
complexity O(DnD̃n). These are then followed by the sig-
nificantly cheaper calculations of the mapping matrices per

Algorithm 4 Tensor Coreset Decomposition (TCD)

Input: X ∈ RD1×...×DN (N -mode tensor),
[R̂1, . . . , R̂N ] (subset sizes per mode)

Output: X ≈ C ×1 MI1 × . . . ×N MIN , where
C ∈ RR̂1×...×R̂N (coreset tensor),
{MI1 , . . . ,MIN } (mapping matrices per mode lll-

llllllllllllllllllllllllllllllllllllllllllllllllll – like factor matrices),
I =

{
I1, . . . , IN

}
(subset index sets per mode)

for each mode n = 1 : N
unfold (matricize) tensor w.r.t. nth mode

llllllllll X → X(n) ∈ RDn×D̃n , with D̃n =
∏N

m=1
m̸=n

Dm

select subset indices In for some R̂n rows of X(n),
llllllllll either randomly (using e.g. norm sampling),
llllllllll or deterministically (using e.g. greedy WKH).

compute inner products of full mode with subset:
llllllllll PIn = (X(n))In X

⊤

(n) ∈ RR̂n×Dn ,

llllllllll also within PIn the submatrix P(In,In) ∈ RR̂n×R̂n

using the kernels P◦2
(In,In) ∈ RR̂n×R̂n

llllllllll and P◦2
In 1Dn ∈ RR̂n , perform kernel NNLS

llllllllll to learn coreset weights w ∈ RR̂n .
arrange weights into diagonal matrixWn = diag(w)
compute and store nth mode’s mapping matrix:

llllllllllMIn = P⊤

InP
−1
(In,In) W

−1
n ∈ RDn×R̂n

replace unfolded tensor with weighted coreset
llllllllll X(n) → Wn (X(n))In ∈ RR̂n×D̃n

replace nth dimension Dn → R̂n
un-matricize the tensor X(n) → X

end for
C → X

each Chidori Beam, of complexityO(R̂nDnT̂n+ R̂3n+ R̂2nDn),
where we denote T̂n =

∏N
m=1
m̸=n

R̂m. The total complexity is

thus: O
(∑N

n=1(DnD̃n + R̂nDnT̂n + R̂3n + R̂2nDn)
)
.

TABLE 2. Computational complexities of TCD and similar methods
described in Sections II and III. For truncated methods, we assume that
the truncation order is n = 1, . . . , N .

We then consider the complexity of TCD with random
(norm sampled) subsets, which we refer to as TCD-R. The
majority of complexity from each nth mode’s truncation
occurs from the norm sampling of complexity O(DnD̃

(n)
n ),

and the calculation of inner products between the subset
and full set PIn of complexity O(R̂nDnD̃

(n)
n ). These are

then used by the significantly cheaper calculations of the
coreset weights of complexity O(R̂3n), and calculation of the
mapping matrices MIn of complexity O(R̂2nDn) (re-using
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P−1
(In,In) from the coreset weights). The total complexity is

thus: O
(∑N

n=1
(
(R̂n + 1)DnD̃

(n)
n + R̂3n + R̂2nDn

))
.

Lastly, we consider the complexity of TCD with deter-
ministic (WKH) subsets, which we refer to as TCD-D. The
majority of complexity from each nth mode’s truncation
occurs from requiring calculation of Pn = X(n) X⊤

(n) ∈

RDn×Dn , the pairwise inner products over the entire nth mode,
of complexity O(D2

nD̃
(n)
n ). This is followed by the WKH

subset selection of complexityO(R̂3nDn), which yields indices
In and weights wn, along with the significantly cheaper
calculations of the mapping matrices MIn of complexity
O(R̂2nDn) (where we can also re-use P

−1
(In,In) from the WKH).

The total complexity is thus: O
(∑N

n=1
(
D2
nD̃

(n)
n + R̂3nDn +

R̂2nDn
))
.

Table 2 provides complexities of these methods. We note
that for symmetric tensors, all methods are capable of
exploiting symmetry by re-using factor matrices across
symmetric modes, as described in Section IV-D. In this case,
the summationO(

∑N
n=1(.)) is truncated to only the number of

unique modes (i.e., symmetric modes are only counted once).
In the next section, we experimentally test the TCD

methods vs other efficient Tucker decomposition methods
for approximating the HOSVD. We first demonstrate perfor-
mance of methods on simulated data under various generative
conditions. Later, we demonstrate these methods on real
fMRI data in the form of functional connectivity maps
(FNCs).

V. NUMERICAL EXPERIMENTS
Wefirst introduce the performancemeasures used to compare
the Tensor decomposition methods. Denoting a method’s
approximated tensor by X̂ , the relative approximation error
of X̂ is given by:

err(X̂ ) =

∥∥∥X − X̂
∥∥∥
F

∥X∥F
∈ [0 ∞)

As the methods discussed in this paper are often used
to approximate the HOSVD or ST-HOSVD, we also use
a measure of distance between factors of the ST-HOSVD
and factors of a method’s estimated HOSVD. We introduce
this new measure as ‘‘HOSVD distance’’, and note that
its formulation utilizes the inter-symbol-interference (ISI)
[111] used to evaluate the performance of blind source
separation methods. Defining HOSVD distance, we denote
A = {A1, . . . ,AN } as the N factor matrices for the ‘‘true’’
ST-HOSVD, and denote Â =

{
Â1, . . . , ÂN

}
as a method’s

corresponding estimated HOSVD factor matrices, obtained
by converting a method’s factorization into a HOSVD via
Algorithm 3. Then the HOSVD distance between a method’s
estimated HOSVD factors Â and the true factors A is given
by:

HOSVD distance (A, Â) =

N∑
n=1

ISI(A⊤
n Ân) (16)

where the ISI of a matrix U ∈ RN×N measures how close the
matrix G is to a permuted diagonal matrix (a performance
measure invariant to sign and permutation ambiguities of the
factors), and is given by:

ISI(U) =
1

2N (N − 1)

[ N∑
n=1

( N∑
m=1

|(U)(n,m)|
maxp(|(U)(n,p)|)

− 1
)

+

N∑
m=1

( N∑
n=1

|(U)(n,m)|
maxp(|(U)(p,n)|)

− 1
)]

(17)

Finally, we also measure the CPU-time of the methods.
For all performance evaluations done in Sections V and VI,
we use the computational resources provided by the UMBC
High Performance Computing Facility (HPCF), thus CPU-
time is reflective of HPCF’s capabilities.

A. EXPERIMENTS WITH SIMULATED DATA
Our generative model of a tensor X is as follows. For a
common dimensionality across the modes D, we model a
tensor X ∈ RD×...×D as the sum of a low-rank signal tensor
XS ∈ RD×...×D and a full-rank noise tensor XN ∈ RD×...×D:

X = XS + η
∥XS∥F

∥XN∥F
XN (18)

where η is the signal to noise ratio (SNR) of X .
The signal tensor XS is given in the form XS = G ×1 A1

×2 . . . ×N AN , where G ∈ RR×...×R is a core tensor for some
‘‘true core size’’ R, and An ∈ RD×R for n = 1, . . . ,N are
the factor matrices. The core tensor G, factor matrices An,
and noise tensor XN are all randomly generated with entries
sampled from the standard Gaussian distribution.

We consider two sets of simulated experiments: one where
the generative model follows a CPD model, and one where
the generative model follows a Tucker model (respectively
referred to in our experiments as ‘‘CPD model data’’ or
‘‘Tucker model data’’). These experiments use the same
conditions described above except for generation of core
tensor G: the Tucker experiments generate all entries of G
from the standard Gaussian distribution, whereas the CPD
experiments specifyG as a superdiagonal core tensor wherein
all (G)(i,...,i) for i = 1, . . . ,R are drawn from the standard
Gaussian distribution, and all other entries of G equal 0.
As our paper focuses on subset-based methods for a

Tucker decomposition, particularly those that approximate
the HOSVD, we limit our results to variations of these meth-
ods. We thus include ST-HOSVD [89], Chidori CUR [79],
[82], RST-CUR [80], a random-projection variant of HOSVD
called RP-HOSVD [C] [83], [112], and another row-based
tensor decomposition like those discussed in Section III-B.,
called RB-HOSVD [101]. While we also discuss the Fiber
CUR [81] in Section III-B, we do not include Fiber CUR in
our experiments as we observed poor performance compared
to the other algorithms.

All of the methods and experiments are coded in
MATLAB. According to the tested methods’ respective
papers, we use norm sampling to obtain random row
subsets of the tensor unfoldings X(n) for Chidori CUR
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and RB-HOSVD, and we use uniform sampling to to
obtain random column subsets of X(n) for RST-CUR. Our
implementation of ST-HOSVD is from the tensor toolbox
version 3.6 [113], and all other methods are coded via details
given in their respective papers.

To simplify the experiments, we perform all of these
methods with a common ‘‘estimated core size’’ R̂ that
is shared across the modes of the estimated tensor. The
decomposition is then converted to an estimated HOSVD
decomposition that also uses the same R̂ for all modes of
the tensor. Therefore, the true HOSVD factor matrices are
given by An ∈ RD×R̂ and the estimated factor matrices can
be given by Ân ∈ RD×R̂, for n = 1, . . . ,N , in which case the
U matrices in (17) are of size R̂ × R̂. Note here that the true
HOSVD is performed for some choice of estimated core size
R̂ that may differ from the true core size R of XS .

Under the generative model defined in (18), we vary these
qualities of the model to test the methods’ performances:
estimated core size R̂, the true core sizesR, the dimensionality
of the modes (mode size) D, the SNR of the simulated data
tensor η, and the number of modes N . All of our experiments
use these default parameters: R = 4, R̂ = 4, η = 10, N = 3,
and D = 200. Given the memory requirements of extremely
large tensors, in the experiment that varies the number of
modes, we restrict N to be either 3 or 4 modes and we use
a smaller default mode size of D = 80.
For all plots where we display CPU time performance,

we note that these plots were essentially identical for the CPD
and Tucker modeled data, thus performance was effectively
independent of the generative model’s core tensor structure.
Therefore, we only show the plot for the CPD model data.
Additionally, we do not show figures for CPU time vs. the
true core size R or the SNR η, as these experiments feature
CPU times that are constant with respect to these variables.

Fig. 2 plots the methods’ CPU time performance with
respect to the mode size D. In this experiment ST-HOSVD
is the slowest of the methods, followed by Chidori CUR, RP-
HOSVD, RST-CUR, TCD-D, and TCD-R. With the default
estimated core size R̂ = 4, we note that TCD-D can maintain
fast times in the event that R̂ is small, which works well
for tensors that have a reasonably low ranks. We also note
that Chidori CUR’s slower performance is mainly due to the
norm sampling over the entire tensor for each nth mode,
in contrast to sampling over truncated tensors such as done
in other methods. Chidori CUR is significantly faster when
uniform sampling is done in place of norm sampling, with an
accompanying degree of loss in approximation performance.

Fig. 3 plots the methods’ CPU time performance with
respect to the estimated core size R̂. TCD-D faces larger
complexity with higher R, whereas all other methods have
complexity that only increases slightly with increasing
R. This may motivate other methods besides TCD-D for
when CPU time is a priority and larger R̂ are desired.
However, TCD-D is still unique among these methods for
deterministically selecting elements from the modes. Thus,

compared to these otherwise predominately randomized
methods, TCD-D is perhaps unique in its utility for feature
selection.

Fig. 4 plots the methods’ CPU time performance with
respect to the number of modes N , for N = 3 and
N = 4. TCD-D and TCD-R are among the fastest methods
in this experiment, and interestingly, TCD-D is the fastest
despite being deterministic. We observe that this is due to
how MATLAB’s efficiency varies with respect to different
mathematical operations: MATLAB is especially efficient in
computing the Gram matrix X(n)X⊤

(n) ∈ RD×D, so much so
that it can actually be more efficient to computeX(n)X⊤

(n) than
even the fastest methods for calculating norms of rows of
X(n), which is required of the norm sampling approaches like
TCD-R, Chidori CUR, and RB-HOSVD. Depending on the
efficiency of the calculations, the programming environment
used and the dimensions of the tensor, these methods may
benefit by using X(n)X⊤

(n) to calculate the norms. At the
same time, this also demonstrates the efficiency of the WKH
procedure in TCD-D for smaller R̂, since it does not lead to
significant increases in complexity above the other methods.

Fig. 5 plots the methods’ relative error performance with
respect to the estimated core size R̂. All methods’ decomposi-
tions exponentially approach the true tensor in approximation

FIGURE 2. CPU time w.r.t. mode size D.

FIGURE 3. CPU time w.r.t. estimated core size R̂.

FIGURE 4. CPU time w.r.t. number of modes N .
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quality with diminishing returns in R̂. Performance of TCD-R
in this experiment is comparable to Chidori CUR, with these
methods only beaten by ST-HOSVD and TCD-D for lower R̂.
Fig. 6 plots the methods’ relative error performance with

respect to the true core size R. Given a fixed estimated core
size R̂ = 4, all decompositions performworse as the true core
size R̂ increases, where with R > 4 the decompositions are
effectively underparametrizing and/or undersampling their
model of the tensor. Like in Fig. 5, in this experiment TCD-D
has an estimation performance that is only slightly worse than
ST-HOSVD. After these methods, TCD-R has the third best
performance, exceeding that of Chidori CUR for larger R̂.

Fig. 7 plots the methods’ relative error performance with
respect to the mode size D. These performances are mostly
constant in D with the CPD data (left), but for the Tucker
data, some methods like Chidori CUR and TCD-R feature
slightly worse performances with larger D, up to diminishing
returns. Most of the randomized methods have much more
comparable relative errors for the CPD model data, with
significantly higher spread with the Tucker model data.

Fig. 8 plots the methods’ relative error performance
with respect to the signal to noise ratio (SNR) η. Subject
to diminishing returns, all methods perform significantly
better in approximating the tensor with higher SNR, and
TCD-D and TCD-R appear to provide some of the better
approximations with lower SNR values. With higher SNR
values, TCD-D’s performance is comparable to ST-HOSVD
and TCD-R’s performance is comparable to Chidori CUR.

Fig. 9 plots the methods’ relative error performance with
respect to the number of modes N , for N = 3 and N = 4.
An apparent disadvantage to Chidori CUR and TCD-R occurs
when N = 4, in which case these methods’ performances
appear to suffer considerably, whereas all other methods are
not as much affected by change of N .
We now discuss the methods’ performances in terms of the

HOSVD distance measure defined in (17). We note that we
compare each algorithm’s estimated HOSVD factors to the
‘‘true’’ factors estimated by ST-HOSVD for the same choice
of R̂, thus we don’t include ST-HOSVD in these plots since it
has a HOSVD distance of 0 with itself.

Fig. 10 plots the methods’ HOSVD distances with respect
to the estimated core size R̂. All plots feature a clear U-shaped
performance curve where the best performance generally
occurs at R̂ = 6, slightly higher than the true core size R = 4.
Interestingly, these U-shaped HOSVD distance vs. R̂ plots are
notably different in shape from the monotonically decreasing
error vs. R̂ plots in Fig. 5. While the relative error of the
decompositions only decreases when the decompositions
model allows for more complexity (via increasing R̂), the
HOSVD distance represents more of a measure of parameter
estimation, where the desired parameters are the true ST-
HOSVD factors, and are best estimated when the estimated
number of factors R̂ is close to the true number R.

Fig. 11 plots the methods’ HOSVD distances with respect
to the true core size R. Whereas Fig. 10 shows a U-shaped
curve with varying R̂, Fig. 11 shows that increasing R strictly

FIGURE 5. Relative error w.r.t. the estimated core size R̂. Left: CPD model
data. Right: Tucker model data.

FIGURE 6. Relative error w.r.t. the true core size R. Left: CPD model data.
Right: Tucker model data.

FIGURE 7. Relative error w.r.t. the mode size D. Left: CPD model data.
Right: Tucker model data.

FIGURE 8. Relative error w.r.t. the SNR η. Left: CPD model data. Right:
Tucker model data.

FIGURE 9. Relative error w.r.t. the number of modes N . Left: CPD model
data. Right: Tucker model data.

worsens the methods’ performances as R < R̂ for a fixed
R̂ = 4. All methods perform poorly when R is too large for
the Tucker model data. However with the CPD model data,
TCD-D performs significantly better than all other methods,
especially with large R.
Fig. 12 plots the methods’ HOSVD distances with respect

to the mode size D. Like in Fig. 7, performances are
mostly constant in D with the CPD data (left), but for the
Tucker data, all methods except TCD-D feature slightly
worse performances with larger D, whereas TCD-D actually
features slightly better performances for larger D, up to
diminishing returns. We suspect the reason for TCD-D
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actually doing better for larger D is that as all other variables
are fixed, the tensor is generated the same with different
D but there are just more elements available to consider
subsets over, in which case TCD-D’s deterministic WKH has
more options of a subset that better minimize the discrepancy
measure, and thus better match the PCs of the tensor.

Fig. 13 plots the methods’ HOSVD distances with respect
to the SNR η. Like in Fig. 8, subject to diminishing returns, all
methods perform significantly better with higher SNR, with
TCD-R’s performance slightly better than Chidori CUR but
typically worse than RST-CUR and RP-HOSVD. Whereas
in Fig. 8 all methods’ relative errors nearly converge to
0 with increased SNR, TCD-D’ HOSVD distance in Fig. 13
converges significantly faster to 0 with increased SNR than
the other methods’ HOSVD distances.

Fig. 14 plots the methods’ HOSVD distances with respect
to the number of modes N , for N = 3 and N = 4. Like in
Fig. 9, TCD-R Chidori CUR perform worse with N = 4 with
the Tucker model data, whereas all other methods’ HOSVD
distances are not as much affected by N .
To summarize these experiments, we observe that TCD-R

is among the most efficient of these methods, and TCD-
D is also efficient when R̂ is small. In most experiments,
TCD-R yields comparatively better approximation error and
HOSVD distance performance vs. other methods with similar
time complexities. Furthermore, TCD-D’s performance is
typically significantly better than all other tested methods,
and even competes closely to that of ST-HOSVD despite
using only a subset of the tensor’s elements.

In the next section, we perform these methods on real data
in the form of fMRI functional connectivity matrices (FNCs),
where we visually demonstrate performance of thesemethods
and also demonstrate the use of TCD-D for feature selection.

FIGURE 10. HOSVD distance w.r.t. the estimated core size R̂. Left: CPD
model data. Right: Tucker model data.

FIGURE 11. HOSVD distance w.r.t. the true core size R. Left: CPD model
data. Right: Tucker model data.

B. EXPERIMENT WITH FMRI DATA
Our experiments use resting-state fMRI data from the bipolar-
schizophrenia network on intermediate phenotypes (B-SNIP)

FIGURE 12. HOSVD distance w.r.t. the mode size D. Left: CPD model data.
Right: Tucker model data.

FIGURE 13. HOSVD distance w.r.t. the SNR η. Left: CPD model data. Right:
Tucker model data.

FIGURE 14. HOSVD distance w.r.t. the number of modes N . Left: CPD
model data. Right: Tucker model data.

TABLE 3. Performances of methods on the original FNC tensor X
∈ R53×53×352, averaged over 1000 independent runs over the data. Best
performances per measure are bolded.

[114], [115], where our data tensor X was obtained from the
acquisition and preprocessing steps described in [116] and
[117]. The main goals of these experiments are to:

• Demonstrate performance of the tensor decomposition
methods on real fMRI data in terms of estimation quality
and computational efficiency.

• Demonstrate TCD-D’s ability (unique among these
methods) to perform feature selection within modes,
selecting well-representative elements of the data. In our
case, these elements are functional networks (FNs)
which are typically used to characterize neurological
phenomenon.

We now detail how the data tensor X was formed.
The fMRI dataset includes 176 healthy control and
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176 schizophrenia patients for a total of K = 352 subjects.
The data was first preprocessed and then analyzed via
constrained independent vector analysis (cIVA) to extract
meaningful latent factors for describing the data. From
each subject’s data, 53 spatial factors were extracted which
correspond to biologically important functional networks
(FNs). These factors are representative of seven different
functional domains: subcortical (SC, 5 FNs), auditory (AUD,
2 FNs), sensorimotor (MOT, 9 FNs), visual (VIS, 9 FNs),
cognitive control (CC, 17 FNs), default mode (DMN, 7
FNs) and cerebellar (CB, 4 FNs). Corresponding to each of
these 53 spatial factors are time course factors, representing
amplitudes of the networks at each point of measurement, and
the correlations between these time courses are particularly
useful for representing relationships between the networks.
All pairwise Pearson correlations between any two of the
53 networks’ time courses is represented in a symmetric
53 × 53 matrix called a functional network connectivity
(FNC)matrix. Our experiment constructs these FNCmatrices
across each of 352 subjects, and forms an FNC tensor X
∈ R53×53×352.

TABLE 4. Performances of methods on the elementwise squared FNC
tensor X ∈ R53×53×352, averaged over 1000 independent runs over the
data. Best performances per measure are bolded.

A key factor in dealing with the data tensor is under-
standing its effective n-ranks given how the tensor was
obtained. Our FNC data was extracted from functional
networks that are expected to be maximally statistically
independent from one another, being extracted from cIVA
whichmaximizes statistical independence between networks.
Therefore, we expect low correlation between the spatial
components of different networks, and this can also result
in time courses that demonstrate low correlation between
disparate networks. This results in a tensor with effectively
high n-ranks, thus decompositions of FNC tensors like
X require higher numbers of factors R̂n to adequately
approximate the FNCs. This presents a challenge for the
decomposition methods to approximate the tensor with
relatively fewer factors, allowing us to better magnify and
compare the methods’ estimation capabilities.

Due to the higher n-ranks of the FNC tensor, we test
the algorithms on two different forms of the FNC tensor:
one being the original FNC tensor, and the other being the

elementwise squaring of the FNC tensor. The elementwise
squaring provides R-squared values representing the degree
of association between the network time courses. Taking the
elementwise square of these FNCs effectively increases the
spread of the singular values of each mode unfolding X(n),
allowing for better approximation with lower-rank models
while still maintaining an interpretable decomposition.

For our experiments, we did a prior exploratory analysis
over several candidates of estimated numbers of factors R̂n,
and ultimately implemented [R̂1, R̂2, R̂3] = [20, 20, 352]
for both forms of the tensor. The reasoning for these
choice of R̂n were as follows: to better exemplify the
approximation quality differences between the methods,
to reasonably approximate the FNCs without too many
factors, and to provide a more parsimonious model which
TCD-D can then use to select networks whose R-squared
values are ‘‘well representative’’ of all R-squared values inX .
These 20 networks could then be interpreted as particularly
informative for approximating the relationships between any
of the 53 networks.

We use the same tensor decomposition methods in
Section V-A to decompose our FNC tensorX . In order to also
exploit the symmetry ofX , we modify each of these methods
to use the same symmetry exploiting process described at the
end of Section IV-D. Therefore, since the first and second
modes are symmetric (pertaining to the 53 networks), the
same factor matrix is used for both of these modes, and
the core tensor is thus also symmetric with respect to these
modes.

As done in the previous section, our experiments measure
performance via CPU time, relative error, and HOSVD
distance. Additionally, we implement a measure of how con-
sistent the methods’ approximated HOSVD decompositions
are with respect to different runs of the decompositions,
which corresponds to different random subsets per run for
the randomized methods. In defining this measure, we denote
Â[m] as the approximated HOSVD factors from a mth run of
a decomposition method over the data, and define the set of
the Â[m] across M runs by the set F =

{
Â[1], . . . , Â[M ]

}
.

Then our measure of ‘‘cross-distance’’, the average distance
between any two runs of a decomposition, is given by:

cross-
distance(F ) =

∑M
m1=1
m2=1

HOSVD distance (Â[m1], Â[m2])

M2 .

(19)
This ‘‘cross-distance’’ can be considered a generalization

of the ‘‘cross-ISI’’ measure used to measure distances
between runs for Blind Source Separation (BSS) meth-
ods [118].

Along with using cross-distance to measure the variability
of the randomized methods, we also use cross-distance to
obtain a single run that is the most well representative
of all other runs, for which we may plot the FNCs
approximated by this run to visually compare the average
approximation quality of the methods. The plotted average
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FIGURE 15. Plots of the average FNCs obtained by the approximated original FNC tensor X̂ , for each method’s most typical run
(the run with the minimum cross-distance to all other runs). All methods used the ranks [R̂1, R̂2, R̂3] = [20, 20, 352].

FIGURE 16. Plots of the average FNCs obtained by the approximated elementwise squared FNC tensor X̂ , for each method’s most
typical run (the run with the minimum cross-distance to all other runs). All methods used the ranks [R̂1, R̂2, R̂3] = [20, 20, 352].

FNCs were obtained by constructing the most representative
run’s approximate tensor X̂ from its factorization, and
then averaging the approximated subject FNCs across the
352 subjects.

Fig. 15 and Fig. 16 exhibit the average FNCs extracted
from a typical run of each method, on the FNC tensor and
squared FNC tensor respectively. In both forms of the data,
the FNCs typically feature two well-defined blocks on the
diagonal. These correspond to the motor (upper block) and
visual (lower block) groups of networks, which feature high
correlation and R-squared values within the groups. Because
of the larger degree of associationwithin these networks, their
larger values in X lead them to be especially important for
approximating X . Viewing the averages of FNCs in Fig. 15,
we observe all methods are able to reasonably approximate
at least one of these blocks, with ST-HOSVD, TCD-D,
TCD-R, Chidori CUR, and RP-HOSVD demonstrating the

two well-defined blocks, and TCD-D and TCD-R having
performance closest to ST-HOSVD. Viewing the average of
squared FNCs in Fig. 16, we note that all methods except
for RB-HOSVD demonstrate two clearly defined blocks,
with TCD-D and TCD-R having performance closest to ST-
HOSVD.

Tables 3 and 4 presents each method’s performance
measures on the FNC tensor. All methods provide rela-
tively higher relative errors, as the decomposition ranks
[R̂1, R̂2, R̂3] = [20, 20, 352] are perhaps relatively conser-
vative for the more heterogeneous nature of the FNC tensor.
While in practice we select R̂n to provide an approximation
quality that is nearly identical to the original tensor, our
choice of lower R̂n is useful for better magnifying the
approximation capabilities of the methods, which are clearly
demonstrated in the much wider range of their values.
ST-HOSVD provides the best relative error, and TCD-D
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TABLE 5. Descriptions of 14 factors selected by TCD-D, shared between
the 20 selected from the original FNC tensor and the 20 from the
elementwise-squared FNC tensor.

features a comparatively similar error while simultaneously
identifying representative networks. Among the more effi-
cient methods, RST-CUR is the fastest method but has
the second worst error and worst cross-distance, whereas
TCD-R is the second fastest method with the third lowest
error, HOSVD distance, and cross-distance. This demon-
strates that TCD-D and TCD-R provide good performance
measures given their time complexities, and can provide
reasonably good approximations to the tensor with fewer
factors R̂n.
Additionally, a key distinction between TCD-D and

the other methods is that TCD-D deterministically selects
elements that are well representative of the tensor. Thus,
TCD-D is unique among these methods for the capability of
performing feature selection with the tensor data. With this
fMRI dataset, TCD-D deterministically selects a reasonably
‘‘best’’ subset of the factor networks. We now consider the
interpretation of the TCD-D selected networks. We observed
that several TCD-D selected networks were selected not only
for the 20 selected networks of the original FNC data, but
also the 20 selected networks of the elementwise squared
data, highlighting the importance of these networks (a total
of 14 networks shared between the two forms of the tensor,
corresponding to the indices 5, 8, 9, 12, 15, 17, 23, 24,
27, 28, 33, 45, 49, 51). Table 5 overviews details of these
14 networks identified over both forms of the data tensor,
including their associated factor index in the FNCs (their
index i1 = i2 in X ), the region of the brain the network
corresponds to, and the group of networks it associates
with.

These identified networks, including regions such as the
thalamus, superior temporal gyrus, superior frontal gyrus, and
posterior cingulate cortex, are significant as they represent
crucial functional ‘‘blocks of networks’’ within the brain.
Each of these networks is associated with specific functional
domains, such as sensorimotor (e.g., left postcentral gyrus,
superior parietal lobule), visual (e.g., inferior occipital gyrus),
cognitive control (e.g., inferior parietal lobule), and the
default mode network (e.g., posterior cingulate cortex).
Clinically, these functional networks have been reported
as significant brain regions highly associated with various
psychiatric disorders. For instance, the superior frontal
gyrus and posterior cingulate cortex have been identified
in previous research as valuable biomarkers for different
psychiatric conditions [116], [119], [120], [121], [122].
Furthermore, the fact that 14 of the 20 networks were
identified over both forms of the tensor (original FNCs,
and elementwise squared FNCs) demonstrates robustness of
the proposed TCD-D method, showing consistent identifi-
cation of meaningful functional areas that are associated
with several psychiatric disorders. For example, reduced
connectivity between the posterior cingulate and frontal areas
in patients with first-episode schizophrenia has been reported
in [123]. The failure of appropriate posterior cingulate cortex
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deactivation has been reported as potential biomarker in
traumatic brain injury and mental disorders like ADHD,
autism and schizophrenia [124].

VI. CONCLUSION
This paper presents efficient Tucker decomposition methods
via using a small subtensor as a multilinear basis over the full
data tensor, whichwe refer to as tensor coreset decompositons
(TCD). The methods operate by sequentially truncating the
tensor by replacing it with a coreset of elements from one
or more of the tensor’s modes, with the coreset calculated
such that it minimizes a discrepancy between itself and the
HOSVD core tensor: principal components of the tensor’s
unfoldings. This process sub-sequentially estimates mapping
matrices that serve as the decomposition’s factor matrices,
which can also be useful for efficiently approximating the
tensor’s HOSVD.

For quantifying the ‘‘representativeness’’ of a coreset over
the data tensor, we introduced a discrepancy-based measure
that has straightforward connections to the cost function of
HOSVD. We use this measure to develop a new efficient
nonnegative least squares (NNLS) procedure for selecting the
coreset weights, such that we minimize the discrepancy with
respect to a choice of subset.

For decompositions that put greater emphasis on effi-
ciency, we proposed ‘‘TCD-R’’ which randomly selects the
subsets using norm sampling. For decompositions that place
greater emphasis on approximation quality, and utility of
selecting well representative subsets and for feature selection,
we proposed ‘‘TCD-D’’ which uses a deterministic subset
selection scheme based on the method of weighted kernel
herding (WKH). Compared to previous methods, TCD-D is
notably unique for its ability to perform unsupervised feature
selection within the modes of the tensor data.

Finally, we experimentally demonstrate that our methods
generally provide good balances between efficiency, approx-
imation error quality, and quality of factors when converted to
a HOSVD. Furthermore, we demonstrate on real fMRI FNC
data that TCD-D is able to identify meaningful subsets of
functional networks which are able to well-approximate the
relationships between all networks in the FNC tensor.
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